Skip to contents

All functions

c(<cv>)
Add models to a cv object
crit_min() crit_last() crit_first() crit_iter() crit_se() crit_overfit() crit_list()
Preference criteria for iteratively fitted models
cv() print(<cv>)
Run a cross-validation
cv_performance() print(<performance>) plot(<performance>)
Calculate train and test errors based on cross-validation.
cv_predict() cv_resid()
Extract out-of-sample predictions and residuals from cross-validation
default_metric()
Get the default metric of an object
evaluation_log() print(<evaluation_log>)
Evaluation log
expand_formula()
Expand a formula
extract_fits()
Extract the models fitted in a cross-validation from a “cv” object.
extract_model() extract_multimodel()
Extraction of a model and multimodel
fit() add_fit() has_fit()
Re-fit a model object using the complete model data
fm_const() print(<fm_const>) predict(<fm_const>)
Fitting a constant model
fm_glmnet() predict(<fm_glmnet>) coef(<fm_glmnet>) plot(<fm_glmnet>)
formula-based wrapper for glmnet()
fm_knn() predict(<fm_knn>)
k-Nearest Neighbors model
fm_smooth_spline() predict(<fm_smooth_spline>)
Smoothing spline model with formula-interface
fm_xgb() print(<fm_xgb>) predict(<fm_xgb>) extract_booster()
formula-based wrapper for xgb.train()
ifm
Iteratively fitted models (IFM) and preferred iterations
label() `label<-`() set_label() n_model()
Query or set model label(s)
last_cv() set_last_cv()
Get and set the last cv object
make_folds()
Create folds (cross-validation groups)
rmse() mae() medae() mse() logLoss() classification_error()
Metrics
model(<glm>) model(<glmrob>) model(<gam>) model(<ranger>) model(<merMod>) model(<lmerMod>) model(<glmerMod>)
Special methods of model()
model() print(<model>)
Create a model object
models()
Combine several fitted models in a multimodel
modeltuner-package modeltuner
modeltuner package overview
modeltuner_cheatsheet()
Open a modeltuner cheatsheet
modeltuner_options()
List all options defined in package “modeltuner”
multimodel() print(<multimodel>) c(<model>) c(<multimodel>)
Create a multimodel object
null_formula()
“Null formula” of a model
param_table()
Table format with informative print method.
performance()
Evaluate the model performance of a model
plot(<evaluation_log>)
Plot method for class “evaluation_log”
plot(<model>) plot(<multimodel>) plot(<cv>)
Plot methods for classes “model”, “multimodel” and “cv”
pmodel()
Purely predictive (non-fittable) model
predict(<model>) residuals(<model>) predict(<multimodel>) residuals(<multimodel>)
Predictions and residuals from a (multi-)model
response()
Extract the values of the model response from an object
set_metric()
Change the default metric of a cv object
set_pref_iter() extract_pref_iter() expand_pref_iter()
Extract set, and expand preference criteria for a “cv” object for iteratively fitted models
simuldat()
Simulate data
sort_models()
Reorder models in an object of class “multimodel”, “cv”, “performance” or “evaluation_log”
step_extend() step_forward() step_reduce() step_backward() best_subset()
Generate and cross-validate models resulting from adding or removing variables and stepwise procedures
subset(<multimodel>) subset(<cv>) subset(<performance>) subset(<evaluation_log>)
Subset an object of class “multimodel”, “cv”, “performance” or “evaluation_log”
tune()
Selection of the best-performing model in a “cv” object
update(<model>) update(<multimodel>) absent() null() unchanged()
Update an object of class “model” or “multimodel”
weights(<model>)
Extract the (fitting) weights from a “model” object