Function reference
-
c(<cv>) - Add models to a
cvobject
-
crit_min()crit_last()crit_first()crit_iter()crit_se()crit_overfit()crit_list() - Preference criteria for iteratively fitted models
-
cv()print(<cv>) - Run a cross-validation
-
cv_performance()print(<performance>)plot(<performance>) - Calculate train and test errors based on cross-validation.
-
cv_predict()cv_resid() - Extract out-of-sample predictions and residuals from cross-validation
-
default_metric() - Get the default metric of an object
-
evaluation_log()print(<evaluation_log>) - Evaluation log
-
expand_formula() - Expand a formula
-
extract_fits() - Extract the models fitted in a cross-validation from a “cv” object.
-
extract_model()extract_multimodel() - Extraction of a model and multimodel
-
fm_const()print(<fm_const>)predict(<fm_const>) - Fitting a constant model
-
fm_glmnet()predict(<fm_glmnet>)coef(<fm_glmnet>)plot(<fm_glmnet>) formula-based wrapper forglmnet()
-
fm_knn()predict(<fm_knn>) - k-Nearest Neighbors model
-
fm_smooth_spline()predict(<fm_smooth_spline>) - Smoothing spline model with
formula-interface
-
fm_xgb()print(<fm_xgb>)predict(<fm_xgb>)extract_booster() formula-based wrapper forxgb.train()
-
ifm - Iteratively fitted models (IFM) and preferred iterations
-
label()`label<-`()set_label()n_model() - Query or set model label(s)
-
last_cv()set_last_cv() - Get and set the last cv object
-
make_folds() - Create folds (cross-validation groups)
-
model(<glm>)model(<glmrob>)model(<gam>)model(<ranger>)model(<merMod>)model(<lmerMod>)model(<glmerMod>) - Special methods of
model()
-
model()print(<model>) - Create a model object
-
models() - Combine several fitted models in a multimodel
-
modeltuner-packagemodeltuner - modeltuner package overview
-
modeltuner_cheatsheet() - Open a modeltuner cheatsheet
-
modeltuner_options() - List all options defined in package “modeltuner”
-
multimodel()print(<multimodel>)c(<model>)c(<multimodel>) - Create a multimodel object
-
null_formula() - “Null formula” of a model
-
param_table() - Table format with informative
printmethod.
-
performance() - Evaluate the model performance of a model
-
plot(<evaluation_log>) - Plot method for class “evaluation_log”
-
plot(<model>)plot(<multimodel>)plot(<cv>) - Plot methods for classes “model”, “multimodel” and “cv”
-
pmodel() - Purely predictive (non-fittable) model
-
predict(<model>)residuals(<model>)predict(<multimodel>)residuals(<multimodel>) - Predictions and residuals from a (multi-)model
-
response() - Extract the values of the model response from an object
-
set_metric() - Change the default metric of a
cvobject
-
set_pref_iter()extract_pref_iter()expand_pref_iter() - Extract set, and expand preference criteria for a “cv” object for iteratively fitted models
-
simuldat() - Simulate data
-
sort_models() - Reorder models in an object of class “multimodel”, “cv”, “performance” or “evaluation_log”
-
step_extend()step_forward()step_reduce()step_backward()best_subset() - Generate and cross-validate models resulting from adding or removing variables and stepwise procedures
-
subset(<multimodel>)subset(<cv>)subset(<performance>)subset(<evaluation_log>) - Subset an object of class “multimodel”, “cv”, “performance” or “evaluation_log”
-
tune() - Selection of the best-performing model in a “cv” object
-
update(<model>)update(<multimodel>)absent()null()unchanged() - Update an object of class “model” or “multimodel”
-
weights(<model>) - Extract the (fitting)
weightsfrom a “model” object