Function reference
-
c(<cv>)
- Add models to a
cv
object
-
crit_min()
crit_last()
crit_first()
crit_iter()
crit_se()
crit_overfit()
crit_list()
- Preference criteria for iteratively fitted models
-
cv()
print(<cv>)
- Run a cross-validation
-
cv_performance()
print(<performance>)
plot(<performance>)
- Calculate train and test errors based on cross-validation.
-
cv_predict()
cv_resid()
- Extract out-of-sample predictions and residuals from cross-validation
-
default_metric()
- Get the default metric of an object
-
evaluation_log()
print(<evaluation_log>)
- Evaluation log
-
expand_formula()
- Expand a formula
-
extract_fits()
- Extract the models fitted in a cross-validation from a “cv” object.
-
extract_model()
extract_multimodel()
- Extraction of a model and multimodel
-
fm_const()
print(<fm_const>)
predict(<fm_const>)
- Fitting a constant model
-
fm_glmnet()
predict(<fm_glmnet>)
coef(<fm_glmnet>)
plot(<fm_glmnet>)
formula
-based wrapper forglmnet()
-
fm_knn()
predict(<fm_knn>)
- k-Nearest Neighbors model
-
fm_smooth_spline()
predict(<fm_smooth_spline>)
- Smoothing spline model with
formula
-interface
-
fm_xgb()
print(<fm_xgb>)
predict(<fm_xgb>)
extract_booster()
formula
-based wrapper forxgb.train()
-
ifm
- Iteratively fitted models (IFM) and preferred iterations
-
label()
`label<-`()
set_label()
n_model()
- Query or set model label(s)
-
last_cv()
set_last_cv()
- Get and set the last cv object
-
make_folds()
- Create folds (cross-validation groups)
-
model(<glm>)
model(<glmrob>)
model(<gam>)
model(<ranger>)
model(<merMod>)
model(<lmerMod>)
model(<glmerMod>)
- Special methods of
model()
-
model()
print(<model>)
- Create a model object
-
models()
- Combine several fitted models in a multimodel
-
modeltuner-package
modeltuner
- modeltuner package overview
-
modeltuner_cheatsheet()
- Open a modeltuner cheatsheet
-
modeltuner_options()
- List all options defined in package “modeltuner”
-
multimodel()
print(<multimodel>)
c(<model>)
c(<multimodel>)
- Create a multimodel object
-
null_formula()
- “Null formula” of a model
-
param_table()
- Table format with informative
print
method.
-
performance()
- Evaluate the model performance of a model
-
plot(<evaluation_log>)
- Plot method for class “evaluation_log”
-
plot(<model>)
plot(<multimodel>)
plot(<cv>)
- Plot methods for classes “model”, “multimodel” and “cv”
-
pmodel()
- Purely predictive (non-fittable) model
-
predict(<model>)
residuals(<model>)
predict(<multimodel>)
residuals(<multimodel>)
- Predictions and residuals from a (multi-)model
-
response()
- Extract the values of the model response from an object
-
set_metric()
- Change the default metric of a
cv
object
-
set_pref_iter()
extract_pref_iter()
expand_pref_iter()
- Extract set, and expand preference criteria for a “cv” object for iteratively fitted models
-
simuldat()
- Simulate data
-
sort_models()
- Reorder models in an object of class “multimodel”, “cv”, “performance” or “evaluation_log”
-
step_extend()
step_forward()
step_reduce()
step_backward()
best_subset()
- Generate and cross-validate models resulting from adding or removing variables and stepwise procedures
-
subset(<multimodel>)
subset(<cv>)
subset(<performance>)
subset(<evaluation_log>)
- Subset an object of class “multimodel”, “cv”, “performance” or “evaluation_log”
-
tune()
- Selection of the best-performing model in a “cv” object
-
update(<model>)
update(<multimodel>)
absent()
null()
unchanged()
- Update an object of class “model” or “multimodel”
-
weights(<model>)
- Extract the (fitting)
weights
from a “model” object