Function reference
- 
          
          
c(<cv>) - Add models to a 
cvobject 
- 
          
          
crit_min()crit_last()crit_first()crit_iter()crit_se()crit_overfit()crit_list() - Preference criteria for iteratively fitted models
 
- 
          
          
cv()print(<cv>) - Run a cross-validation
 
- 
          
          
cv_performance()print(<performance>)plot(<performance>) - Calculate train and test errors based on cross-validation.
 
- 
          
          
cv_predict()cv_resid() - Extract out-of-sample predictions and residuals from cross-validation
 
- 
          
          
default_metric() - Get the default metric of an object
 
- 
          
          
evaluation_log()print(<evaluation_log>) - Evaluation log
 
- 
          
          
expand_formula() - Expand a formula
 
- 
          
          
extract_fits() - Extract the models fitted in a cross-validation from a “cv” object.
 
- 
          
          
extract_model()extract_multimodel() - Extraction of a model and multimodel
 
- 
          
          
fm_const()print(<fm_const>)predict(<fm_const>) - Fitting a constant model
 
- 
          
          
fm_glmnet()predict(<fm_glmnet>)coef(<fm_glmnet>)plot(<fm_glmnet>) formula-based wrapper forglmnet()
- 
          
          
fm_knn()predict(<fm_knn>) - k-Nearest Neighbors model
 
- 
          
          
fm_smooth_spline()predict(<fm_smooth_spline>) - Smoothing spline model with 
formula-interface 
- 
          
          
fm_xgb()print(<fm_xgb>)predict(<fm_xgb>)extract_booster() formula-based wrapper forxgb.train()
- 
          
          
ifm - Iteratively fitted models (IFM) and preferred iterations
 
- 
          
          
label()`label<-`()set_label()n_model() - Query or set model label(s)
 
- 
          
          
last_cv()set_last_cv() - Get and set the last cv object
 
- 
          
          
make_folds() - Create folds (cross-validation groups)
 
- 
          
          
model(<glm>)model(<glmrob>)model(<gam>)model(<ranger>)model(<merMod>)model(<lmerMod>)model(<glmerMod>) - Special methods of 
model() 
- 
          
          
model()print(<model>) - Create a model object
 
- 
          
          
models() - Combine several fitted models in a multimodel
 
- 
          
          
modeltuner-packagemodeltuner - modeltuner package overview
 
- 
          
          
modeltuner_cheatsheet() - Open a modeltuner cheatsheet
 
- 
          
          
modeltuner_options() - List all options defined in package “modeltuner”
 
- 
          
          
multimodel()print(<multimodel>)c(<model>)c(<multimodel>) - Create a multimodel object
 
- 
          
          
null_formula() - “Null formula” of a model
 
- 
          
          
param_table() - Table format with informative 
printmethod. 
- 
          
          
performance() - Evaluate the model performance of a model
 
- 
          
          
plot(<evaluation_log>) - Plot method for class “evaluation_log”
 
- 
          
          
plot(<model>)plot(<multimodel>)plot(<cv>) - Plot methods for classes “model”, “multimodel” and “cv”
 
- 
          
          
pmodel() - Purely predictive (non-fittable) model
 
- 
          
          
predict(<model>)residuals(<model>)predict(<multimodel>)residuals(<multimodel>) - Predictions and residuals from a (multi-)model
 
- 
          
          
response() - Extract the values of the model response from an object
 
- 
          
          
set_metric() - Change the default metric of a 
cvobject 
- 
          
          
set_pref_iter()extract_pref_iter()expand_pref_iter() - Extract set, and expand preference criteria for a “cv” object for iteratively fitted models
 
- 
          
          
simuldat() - Simulate data
 
- 
          
          
sort_models() - Reorder models in an object of class “multimodel”, “cv”, “performance” or “evaluation_log”
 
- 
          
          
step_extend()step_forward()step_reduce()step_backward()best_subset() - Generate and cross-validate models resulting from adding or removing variables and stepwise procedures
 
- 
          
          
subset(<multimodel>)subset(<cv>)subset(<performance>)subset(<evaluation_log>) - Subset an object of class “multimodel”, “cv”, “performance” or “evaluation_log”
 
- 
          
          
tune() - Selection of the best-performing model in a “cv” object
 
- 
          
          
update(<model>)update(<multimodel>)absent()null()unchanged() - Update an object of class “model” or “multimodel”
 
- 
          
          
weights(<model>) - Extract the (fitting) 
weightsfrom a “model” object