Special methods of model()
model-methods.Rd
These methods account for special features of the predict
methods of some popular model types:
glm
(from package stats),
glmrob
(from package robustbase),
gam
(from package mgcv),
ranger
(from package ranger),
lmer
, glmer
(from package lme4).
They all execute model.default()
with an adjusted default value of predict_function
.
Usage
# S3 method for glm
model(
x,
...,
predict_function = function(object, ...) predict(object, ..., type = "response"),
env = parent.frame()
)
# S3 method for glmrob
model(
x,
...,
predict_function = function(object, ...) predict(object, ..., type = "response"),
env = parent.frame()
)
# S3 method for gam
model(
x,
...,
predict_function = function(object, ...) predict(object, ..., type = "response"),
env = parent.frame()
)
# S3 method for ranger
model(
x,
...,
predict_function = function(object, ...) predict(object, ...)$predictions,
env = parent.frame()
)
# S3 method for merMod
model(
x,
...,
predict_function = function(object, ..., type = "response", allow.new.levels = TRUE)
predict(object, ..., allow.new.levels = allow.new.levels),
env = parent.frame()
)
# S3 method for lmerMod
model(
x,
...,
predict_function = function(object, ..., type = "response", allow.new.levels = TRUE)
predict(object, ..., allow.new.levels = allow.new.levels),
env = parent.frame()
)
# S3 method for glmerMod
model(
x,
...,
predict_function = function(object, ..., type = "response", allow.new.levels = TRUE)
predict(object, ..., allow.new.levels = allow.new.levels),
env = parent.frame()
)
Arguments
- x
A fitted model.
- ...
Passed to
model.default()
.- predict_function
As in
model.default
.- env
An environment. Used for internal purposes.
Examples
# Simulate data
d <- simuldat()
# ranger fitted model (random forest):
if (require(ranger)){
ranger_fitted <- ranger(Y ~ ., d)
# Methods predict.ranger() returns a list:
str(predict(ranger_fitted, data = d))
# Method model.ranger() makes sure that a "model" object returns
# a vector, as required:
ranger_model <- model(ranger_fitted)
predict(ranger_model)
}
#> List of 5
#> $ predictions : num [1:500] 2.92 6.26 -1.35 2.76 6.09 ...
#> $ num.trees : num 500
#> $ num.independent.variables: num 11
#> $ num.samples : int 500
#> $ treetype : chr "Regression"
#> - attr(*, "class")= chr "ranger.prediction"
#> 1 2 3 4 5 6
#> 2.91631098 6.26134305 -1.34780870 2.76100755 6.09257025 4.42211470
#> 7 8 9 10 11 12
#> 6.78545610 7.33146115 4.14053750 1.17097194 -2.84093221 3.39374205
#> 13 14 15 16 17 18
#> 0.33780223 4.58553928 5.58182871 8.12603752 3.72604377 4.56215423
#> 19 20 21 22 23 24
#> 4.96627884 6.30760876 4.94196994 4.38367527 7.10772055 3.97831499
#> 25 26 27 28 29 30
#> 5.86480146 8.44237233 2.98875420 3.21152098 5.87508518 4.50926405
#> 31 32 33 34 35 36
#> 4.65584514 3.68389230 2.12183612 3.41618665 2.11476106 2.57904001
#> 37 38 39 40 41 42
#> 3.29527777 3.66304204 2.69351695 3.08974745 5.69446596 5.73572447
#> 43 44 45 46 47 48
#> 4.73120763 7.92816020 2.56899105 4.41101371 3.04676948 5.08871687
#> 49 50 51 52 53 54
#> 1.78658629 6.30525996 1.28558710 4.49212530 5.31736587 6.27955658
#> 55 56 57 58 59 60
#> 5.13352741 3.86483362 2.12919455 5.41657007 7.52815584 5.69844757
#> 61 62 63 64 65 66
#> 4.43919367 5.01851187 6.44574883 1.91884013 1.76946875 3.26919777
#> 67 68 69 70 71 72
#> 6.51161773 4.77641486 8.46678002 6.60230456 6.24928789 -2.23269471
#> 73 74 75 76 77 78
#> 5.92310844 5.76268576 2.89829650 4.43484215 4.35922348 2.16435021
#> 79 80 81 82 83 84
#> 6.40823754 3.84899619 3.40405079 1.93731925 5.66865715 3.99114018
#> 85 86 87 88 89 90
#> 6.07044507 4.98774369 2.60238842 4.07240134 1.87292015 4.01765390
#> 91 92 93 94 95 96
#> 3.50254838 4.82708541 2.80101398 6.38136677 2.04378731 6.11222030
#> 97 98 99 100 101 102
#> 4.34613332 -1.69144285 2.83133485 7.54631918 1.83290046 1.27700285
#> 103 104 105 106 107 108
#> 7.00848829 4.29107640 5.54136269 4.69688307 3.02178322 8.98761683
#> 109 110 111 112 113 114
#> 2.06902910 1.37973583 4.62967358 2.30298310 7.17993543 4.23408099
#> 115 116 117 118 119 120
#> 4.94599346 2.86228994 -0.44324822 6.41408755 5.09070133 5.40694922
#> 121 122 123 124 125 126
#> 2.96586088 3.14094370 8.26596186 -0.20062942 5.54577576 0.96037158
#> 127 128 129 130 131 132
#> 5.52839672 6.72168986 3.23478807 3.88216140 1.52751880 3.45972785
#> 133 134 135 136 137 138
#> 6.59809893 3.33458081 8.29455687 4.49673712 3.87842837 6.83636309
#> 139 140 141 142 143 144
#> 1.08801775 -1.08917412 5.93583786 5.94901419 3.77277060 1.99488492
#> 145 146 147 148 149 150
#> 3.61117486 1.47451818 4.95003547 4.20954477 5.31712485 0.42640919
#> 151 152 153 154 155 156
#> 6.23509448 3.32537831 4.31329505 3.63117266 11.44642826 0.51997242
#> 157 158 159 160 161 162
#> 4.81176455 7.72329750 4.06251850 5.97439404 0.50064504 0.40197567
#> 163 164 165 166 167 168
#> 3.04359664 -0.43138400 1.78486781 7.66478534 0.22444857 1.24971914
#> 169 170 171 172 173 174
#> 1.08783464 4.98442039 6.12099881 2.64717103 5.86062651 3.68045282
#> 175 176 177 178 179 180
#> 1.42412017 7.26484374 4.03144279 4.62841225 5.32358453 1.12251471
#> 181 182 183 184 185 186
#> 6.71904749 2.11701290 2.37191763 5.99872002 3.24736589 5.13766190
#> 187 188 189 190 191 192
#> 3.14707656 4.04452210 5.53162629 3.00628350 3.49735253 0.75033643
#> 193 194 195 196 197 198
#> 6.60747359 6.09751195 2.76793444 4.75113178 0.44164274 5.59499761
#> 199 200 201 202 203 204
#> 2.34349542 3.78747390 4.54312663 4.54971143 1.03481154 7.22276430
#> 205 206 207 208 209 210
#> 6.58579971 5.12623672 2.83270088 4.18302873 2.30582237 4.11913245
#> 211 212 213 214 215 216
#> 7.39957406 8.96719837 4.59464952 1.58300805 1.64558215 2.86836308
#> 217 218 219 220 221 222
#> 4.23779549 4.71156141 1.95325141 5.47944108 2.10302701 6.67901401
#> 223 224 225 226 227 228
#> 1.93735897 3.32752710 0.70859749 7.39005732 2.56560830 6.02207548
#> 229 230 231 232 233 234
#> 9.39154723 6.86663707 4.41232455 8.58459585 3.92256379 6.64115797
#> 235 236 237 238 239 240
#> 6.32744418 2.68269303 5.00982899 2.70813360 1.64662670 5.57640601
#> 241 242 243 244 245 246
#> 4.13061151 7.37637345 0.14841804 4.59352065 2.20526565 4.34205936
#> 247 248 249 250 251 252
#> 2.21627003 5.60468915 2.95570230 5.43273092 5.06193653 0.58308015
#> 253 254 255 256 257 258
#> 5.35506452 3.50584520 6.99735693 6.25140785 5.53627706 3.48093558
#> 259 260 261 262 263 264
#> 3.89512774 3.37914568 2.19157366 3.77809251 2.47163367 8.70604724
#> 265 266 267 268 269 270
#> 3.97418655 4.31452349 6.39983471 5.26516658 6.20690055 4.11630281
#> 271 272 273 274 275 276
#> 6.23398524 3.58559906 4.50007914 7.61936407 4.43939341 3.15279348
#> 277 278 279 280 281 282
#> 4.20865971 -1.03206011 9.08279909 3.23320288 6.56471246 5.47482481
#> 283 284 285 286 287 288
#> 4.72032775 1.73601771 5.54436211 4.55897796 3.07213435 -0.21475534
#> 289 290 291 292 293 294
#> 6.20498485 5.65724415 4.27453569 7.33228653 1.13409235 2.31536166
#> 295 296 297 298 299 300
#> 4.63057719 3.70253915 8.45966174 1.23745477 4.90110013 0.61415672
#> 301 302 303 304 305 306
#> 2.68360540 3.28334324 0.75979428 3.67773141 7.27572970 7.22967797
#> 307 308 309 310 311 312
#> 4.54270622 6.04970120 4.81150978 8.68081333 7.34166850 4.04374686
#> 313 314 315 316 317 318
#> 4.07353908 3.67318554 2.01724514 5.72654292 4.02426731 5.84777468
#> 319 320 321 322 323 324
#> 3.61122027 5.41094020 7.94185502 5.06218191 8.16730182 4.87721427
#> 325 326 327 328 329 330
#> 2.90691496 5.90000920 6.21134980 6.11094641 4.25882061 4.63535827
#> 331 332 333 334 335 336
#> 3.80220969 3.40934887 1.01361685 5.40544932 2.91173868 2.25656858
#> 337 338 339 340 341 342
#> 6.02398431 2.65980381 2.59007977 6.42324254 6.68840896 3.74938730
#> 343 344 345 346 347 348
#> 3.26284761 2.12687481 1.56788377 6.14683082 4.22269089 1.02570759
#> 349 350 351 352 353 354
#> 5.38701645 3.67168964 6.71666944 6.66425253 4.37137560 3.34453796
#> 355 356 357 358 359 360
#> 5.25398081 1.26070193 7.27646535 4.49036848 1.51371191 4.23857828
#> 361 362 363 364 365 366
#> -0.69665834 1.98604236 2.42548387 5.68727523 2.82628530 6.31981781
#> 367 368 369 370 371 372
#> 1.69837590 6.81035611 7.57950732 3.75879235 5.68589178 2.03280450
#> 373 374 375 376 377 378
#> 3.48847810 7.09617989 3.31343059 8.09563852 2.09313166 5.06863326
#> 379 380 381 382 383 384
#> 5.93289137 2.70876708 5.92240837 -0.25745600 4.15732373 1.34024476
#> 385 386 387 388 389 390
#> 1.29422776 0.04056416 4.99953383 5.51428665 3.18066711 4.17121504
#> 391 392 393 394 395 396
#> 0.72469716 6.18808701 5.03562990 2.31041355 5.22205671 7.65438539
#> 397 398 399 400 401 402
#> 1.81286088 -0.22198274 4.78915715 8.00895631 2.66218748 0.91373529
#> 403 404 405 406 407 408
#> 2.17260899 2.74548157 6.65124691 3.72753964 1.37979317 5.62181869
#> 409 410 411 412 413 414
#> 5.42688868 2.50120895 1.37018777 1.71975225 7.49634109 2.53320041
#> 415 416 417 418 419 420
#> 4.09990751 5.83460296 3.72070428 6.59719572 2.39746710 5.51498683
#> 421 422 423 424 425 426
#> 4.30574046 2.22250821 5.03907441 5.29197922 5.37888705 4.41969614
#> 427 428 429 430 431 432
#> 1.57583400 7.62275972 3.67160690 5.70304311 3.93307354 6.65054615
#> 433 434 435 436 437 438
#> 3.84039255 3.15814219 3.15302074 3.24332759 2.82569270 5.92007441
#> 439 440 441 442 443 444
#> 3.75862471 3.38365969 0.34502271 2.68942939 0.01067636 3.04535935
#> 445 446 447 448 449 450
#> 3.13720785 3.37998571 4.80023514 2.15332031 0.79666048 5.66739420
#> 451 452 453 454 455 456
#> 4.26253637 4.45426566 3.91968503 7.31406769 3.52516962 3.54675270
#> 457 458 459 460 461 462
#> 6.49504534 6.06883986 6.00230067 5.18343276 2.46664108 1.43101271
#> 463 464 465 466 467 468
#> 2.96636915 2.32116336 3.15934747 3.31547923 2.10178055 -0.76393641
#> 469 470 471 472 473 474
#> 3.48492600 4.91009052 6.44697292 4.48537400 0.24221103 3.85614813
#> 475 476 477 478 479 480
#> 4.82795795 6.20075939 4.12066100 1.10844694 5.37623813 4.23414625
#> 481 482 483 484 485 486
#> 4.18021021 9.39753490 3.42141044 7.34665714 5.52553029 7.79488010
#> 487 488 489 490 491 492
#> 3.96068717 4.67981222 4.99659705 3.40434779 4.05707817 3.43648895
#> 493 494 495 496 497 498
#> 2.65624452 2.45385811 6.55673350 3.58396092 6.30268046 3.43461812
#> 499 500
#> 3.04277400 5.95528571