Subset an object of class “multimodel”, “cv”, “performance” or “evaluation_log”
subset.Rd
subset()
methods for classes “multimodel”,
“cv”, “performance” and “evaluation_log”.
Usage
# S3 method for multimodel
subset(x, subset = TRUE, ...)
# S3 method for cv
subset(x, subset = TRUE, ...)
# S3 method for performance
subset(x, subset = TRUE, ...)
# S3 method for evaluation_log
subset(x, subset = TRUE, ...)
Arguments
- x
multimodel
orcv
or other object.- subset
Selection of models: An integer vector or a logical vector of appropriate length, or a character vector of model
label
s.- ...
Not used.
See also
extract_model
(in particular examples),
label
, sort_models
Examples
mm <- c(speed_lm = model(lm(dist ~ speed, cars)),
speed_loess = model(loess(dist ~ speed, cars,
control = loess.control(surface = "direct"))),
speed_rpart = model(rpart::rpart(dist ~ speed, cars)))
# subset.multimodel:
subset(mm, 1:2)
#> --- A “multimodel” object containing 2 models ---
#>
#> ‘speed_lm’:
#> model class: lm
#> formula: dist ~ speed
#> data: data.frame [50 x 2],
#> input as: ‘data = cars’
#> call: lm(formula = dist ~ speed, data = data)
#>
#> ‘speed_loess’:
#> model class: loess
#> formula: dist ~ speed
#> data: data.frame [50 x 2],
#> input as: ‘data = cars’
#> call: loess(formula = dist ~ speed, data = data, control = loess.control(surface = "direct"))
# subset.cv:
cv_mm <- cv(mm)
subset(cv_mm, 3:2)
#> --- A “cv” object containing 2 validated models ---
#>
#> Validation procedure: Complete k-fold Cross-Validation
#> Number of obs in data: 50
#> Number of test sets: 10
#> Size of test sets: 5
#> Size of training sets: 45
#>
#> Models:
#>
#> ‘speed_rpart’:
#> model class: rpart
#> formula: dist ~ speed
#> metric: rmse
#>
#> ‘speed_loess’:
#> model class: loess
#> formula: dist ~ speed
#> metric: rmse
# subset.performance:
cv_perf <- cv_performance(cv_mm)
subset(cv_perf, c(1, 3))
#> --- Performance table ---
#> Metric: rmse
#> train_rmse test_rmse time_cv
#> speed_lm 15.022 14.184 0.008
#> speed_rpart 16.543 16.679 0.018