Preference criteria for iteratively fitted models
crit_iter.Rd
These functions are passed to cv(model, ...)
via the argument iter
in case of an iteratively fitted model (see ifm).
By default, iter=crit_min()
.
crit_min()
selects the iteration with minimal test error.crit_last()
selects the last iteration.crit_first()
selects the first iteration.crit_iter(iter)
selectsiter
th iteration.crit_se(factor)
selects the iteration with minimal test error among those where the test error does not exceed the minimal test error by more thanfactor
standard errors.crit_overfit(ratio)
selects the iteration with minimal test error among those where the ratio of training and test error does not fall belowratio
.crit_list(...)
combines several criteria, as incrit_list(crit_min(), crit_se())
. Writingc(...)
with...
being a number of criteria is equivalent withcrit_list(...)
.
Usage
crit_min(label_suffix = "min")
crit_last(label_suffix = "last")
crit_first(label_suffix = "first")
crit_iter(iter, label_suffix = paste0("iter", iter))
crit_se(factor = 1, label_suffix = paste0(factor, "se"), warn = TRUE)
crit_overfit(ratio = 0.9, label_suffix = paste0("overfit", ratio), warn = TRUE)
crit_list(...)
Arguments
- label_suffix
Suffix used to create label.
- iter
Number of iteration
- factor
Factor applied to standard error.
- warn
Logical: Whether to warn in case of an invalid input.
- ratio
Ratio of training and test error.
- ...
Enumeration of criteria.
Examples
crit_min()
#> Preference criterion for an iteratively fitted model:
#> criterion: crit_min()
#> label suffix: “min”
#> Selects the iteration with minimal test error.
crit_last()
#> Preference criterion for an iteratively fitted model:
#> criterion: crit_last()
#> label suffix: “last”
#> Selects the last iteration.
crit_iter(20)
#> Preference criterion for an iteratively fitted model:
#> criterion: crit_iter(20)
#> label suffix: “iter20”
#> Selects iteration number min{20, # of iterations}.
crit_iter(c(10, 20))
#> 2 preference criteria for an iteratively fitted model:
#>
#> criterion: crit_iter(10)
#> label suffix: “iter10”
#> Selects iteration number min{10, # of iterations}.
#>
#> criterion: crit_iter(20)
#> label suffix: “iter20”
#> Selects iteration number min{20, # of iterations}.
crit_se(2)
#> Preference criterion for an iteratively fitted model:
#> criterion: crit_se(2)
#> label suffix: “2se”
#> Selects the first iteration where test error does not exceed
#> the minimal test error by more than 2 standard errors.
crit_overfit()
#> Preference criterion for an iteratively fitted model:
#> criterion: crit_overfit(0.9)
#> label suffix: “overfit0.9”
#> Selects the iteration with minimal test error among those where
#> the ratio of training and test error does not fall below 0.9.
crit_overfit(c(1, .9, .8))
#> 3 preference criteria for an iteratively fitted model:
#>
#> criterion: crit_overfit(1)
#> label suffix: “overfit1”
#> Selects the iteration with minimal test error among those where
#> the ratio of training and test error does not fall below 1.
#>
#> criterion: crit_overfit(0.9)
#> label suffix: “overfit0.9”
#> Selects the iteration with minimal test error among those where
#> the ratio of training and test error does not fall below 0.9.
#>
#> criterion: crit_overfit(0.8)
#> label suffix: “overfit0.8”
#> Selects the iteration with minimal test error among those where
#> the ratio of training and test error does not fall below 0.8.
# combine criteria with either crit_list() or c():
crit_list(crit_first(), crit_last())
#> 2 preference criteria for an iteratively fitted model:
#>
#> criterion: crit_first()
#> label suffix: “first”
#> Selects the first iteration.
#>
#> criterion: crit_last()
#> label suffix: “last”
#> Selects the last iteration.
c(crit_first(), crit_last()) # the same
#> 2 preference criteria for an iteratively fitted model:
#>
#> criterion: crit_first()
#> label suffix: “first”
#> Selects the first iteration.
#>
#> criterion: crit_last()
#> label suffix: “last”
#> Selects the last iteration.